On the KdV/KP-I regime for the Nonlinear Schrödinger equation

David CHIRON

University of Nice - Sophia Antipolis

collaborations with Frédéric ROUSSET and Mihai MARIŞ

Setting

We consider the non linear Schrödinger equation in \mathbb{R}^d

$$i\frac{\partial\Psi}{\partial\tau} + \Delta\Psi = \Psi f(|\Psi|^2) \qquad (NLS)$$

 $\Psi(\tau, x) \in \mathbb{C}, \qquad \tau \ge 0, \qquad x \in \mathbb{R}^d.$

Setting

We consider the non linear Schrödinger equation in \mathbb{R}^d

$$i\frac{\partial\Psi}{\partial\tau} + \Delta\Psi = \Psi f(|\Psi|^2) \qquad (NLS)$$

 $\Psi(\tau, x) \in \mathbb{C}, \qquad \tau \ge 0, \qquad x \in \mathbb{R}^d.$

We assume

f(1) = 0,

example: $f(r) = r - 1 \rightarrow \text{NLS=GP}$

 $\Psi = 1$ is a trivial solution of (NLS). We consider an initial datum

$$\Psi_{|\tau=0} \simeq 1.$$

Madelung's transform: (for $|\Psi| > 0$)

$$\Psi = a \exp(i\phi),$$

with

$$a(\tau, x) \in \mathbb{R}^+, \qquad \phi(\tau, x) \in \mathbb{R}, \qquad v \equiv \nabla \phi.$$

$$(NLS) \qquad \Longleftrightarrow \qquad \begin{cases} \partial_{\tau}(a^2) + \nabla \cdot (a^2 v) = 0\\ \\ \partial_{\tau}v + 2(v \cdot \nabla)v + \nabla (f(a^2)) = \nabla \left(\frac{\Delta a}{a}\right). \end{cases}$$

Compressible Euler type system plus *quantum pressure*.

 \star Two equations describing unidirectional waves :

$$2\partial_t \zeta + \Gamma \zeta \partial_z \zeta - \frac{1}{\mathfrak{c}_s^2} \,\partial_z^3 \zeta = 0, \qquad (d = 1) \tag{KdV}$$

and

$$2\partial_t \zeta + \Gamma \zeta \partial_{z_1} \zeta - \frac{1}{\mathfrak{c}_s^2} \,\partial_{z_1}^3 \zeta + \Delta_{z_\perp} \partial_{z_1}^{-1} \zeta = 0 \qquad (d \ge 2). \tag{KP-I}$$

where (f'(1) > 0)

$$\mathfrak{c}_s \equiv \sqrt{f'(1)} > 0$$
 and $\Gamma \equiv 6 + \frac{4}{\mathfrak{c}_s^2} f''(1) \in \mathbb{R}.$

Ansatz $\Psi(\tau, x) = (1 + \varepsilon^2 A^{\varepsilon}(t, z)) \exp(i\varepsilon \varphi^{\varepsilon}(t, z))$ with

$$t = \mathfrak{c}_s \varepsilon^3 \tau$$
, $z_1 = \varepsilon (x_1 - \mathfrak{c}_s t)$, $z_\perp = \varepsilon^2 x_\perp$.

$$(NLS) \qquad \Longleftrightarrow \qquad \begin{cases} \partial_{\tau}(a^2) + \nabla \cdot (a^2 v) = 0\\ \\ \partial_{\tau}v + 2(v \cdot \nabla)v + \nabla(f(a^2)) = \nabla\left(\frac{\Delta a}{a}\right). \end{cases}$$

Ansatz $\Psi(\tau, x) = (1 + \varepsilon^2 A^{\varepsilon}(t, z)) \exp(i\varepsilon \varphi^{\varepsilon}(t, z))$ with

$$t = \mathfrak{c}_s \varepsilon^3 \tau$$
, $z_1 = \varepsilon (x_1 - \mathfrak{c}_s t)$, $z_\perp = \varepsilon^2 x_\perp$.

$$u^{\varepsilon} \equiv \frac{1}{\mathfrak{c}_s} \partial_{z_1} \varphi^{\varepsilon}$$

$$(d=1) \qquad \begin{cases} \partial_t A^{\varepsilon} - \frac{1}{\varepsilon^2} \partial_z A^{\varepsilon} + 2u^{\varepsilon} \partial_z A^{\varepsilon} + \frac{1}{\varepsilon^2} \partial_z u^{\varepsilon} + A^{\varepsilon} \partial_z u^{\varepsilon} = 0 \\\\ \partial_t u^{\varepsilon} - \frac{1}{\varepsilon^2} \partial_z u^{\varepsilon} + 2u^{\varepsilon} \partial_z u^{\varepsilon} + \frac{1}{\varepsilon^2} \partial_z A^{\varepsilon} + (\Gamma - 5) A^{\varepsilon} \partial_z A^{\varepsilon} \\\\ = \partial_z \Big(\frac{\partial_z^2 A^{\varepsilon}}{c_s^2 (1 + \varepsilon^2 A^{\varepsilon})} \Big) + \varepsilon^2 \partial_z \big(\mathcal{O}([A^{\varepsilon}]^3) \big). \end{cases}$$

$$(d=1) \qquad \begin{cases} \partial_t A^{\varepsilon} - \frac{1}{\varepsilon^2} \partial_z A^{\varepsilon} + 2u^{\varepsilon} \partial_z A^{\varepsilon} + \frac{1}{\varepsilon^2} \partial_z u^{\varepsilon} + A^{\varepsilon} \partial_z u^{\varepsilon} = 0 \\\\ \partial_t u^{\varepsilon} - \frac{1}{\varepsilon^2} \partial_z u^{\varepsilon} + 2u^{\varepsilon} \partial_z u^{\varepsilon} + \frac{1}{\varepsilon^2} \partial_z A^{\varepsilon} + (\Gamma - 5) A^{\varepsilon} \partial_z A^{\varepsilon} \\\\ = \partial_z \Big(\frac{\partial_z^2 A^{\varepsilon}}{c_s^2 (1 + \varepsilon^2 A^{\varepsilon})} \Big) + \varepsilon^2 \partial_z \big(\mathcal{O}([A^{\varepsilon}]^3) \big). \end{cases}$$

If A^{ε} and u^{ε} are indeed of order one, we must have

$$A^{\varepsilon} \simeq u^{\varepsilon} = \frac{1}{\mathfrak{c}_s} \partial_z \varphi^{\varepsilon} \to A.$$

Formal derivation of (KdV) and (KP-I)

Summing the two equations :

$$\implies \quad \partial_t (A^{\varepsilon} + u^{\varepsilon}) + 2u^{\varepsilon} \partial_z A^{\varepsilon} + A^{\varepsilon} \partial_z u^{\varepsilon} + 2u^{\varepsilon} \partial_z u^{\varepsilon} + (\Gamma - 5) A^{\varepsilon} \partial_z A^{\varepsilon}$$

$$=\partial_z \Big(\frac{\partial_z^2 A^{\varepsilon}}{\mathfrak{c}_s^2 (1+\varepsilon^2 A^{\varepsilon})}\Big) + \mathcal{O}(\varepsilon^2)$$

$$2\partial_t A + \Gamma A \partial_z A - \frac{1}{\mathfrak{c}_s^2} \partial_z^3 A = 0.$$

 \Downarrow

Summing the two equations :

$$\implies \quad \partial_t (A^{\varepsilon} + u^{\varepsilon}) + 2u^{\varepsilon} \partial_z A^{\varepsilon} + A^{\varepsilon} \partial_z u^{\varepsilon} + 2u^{\varepsilon} \partial_z u^{\varepsilon} + (\Gamma - 5) A^{\varepsilon} \partial_z A^{\varepsilon}$$

$$=\partial_{z}\Big(\frac{\partial_{z}^{2}A^{\varepsilon}}{\mathfrak{c}_{s}^{2}(1+\varepsilon^{2}A^{\varepsilon})}\Big)+\mathcal{O}(\varepsilon^{2})$$

$$2\partial_t A + \Gamma A \partial_z A - \frac{1}{\mathfrak{c}_s^2} \partial_z^3 A = 0.$$

 \downarrow

♦ Derivation standard in the physical literature : *Condensats:* Jones-Roberts (GP, d = 2 ou 3) *Nonlinear Optics* : Kivshar (general f, d = 1, d = 2). Theorem 1 [C.-Rousset] (d = 1): We assume

$$\sup_{0<\varepsilon<1}\left\{\left\|A_0^{\varepsilon}\right\|_{H^1}+\frac{1}{\varepsilon}\left\|\frac{\partial_z\varphi_0^{\varepsilon}}{\mathfrak{c}_s}-A_0^{\varepsilon}\right\|_{L^2}\right\}<+\infty\quad\text{and}\quad A_0^{\varepsilon}\to A_0\quad\text{in}\quad L^2.$$

then, the solution Ψ of (NLS) with $\Psi_{|\tau=0} = (1 + \varepsilon^2 A_0^{\varepsilon}) \exp(i\varepsilon \varphi_0^{\varepsilon})$ writes $\Psi(\tau, x) = (1 + \varepsilon^2 A^{\varepsilon}(t, z)) \exp(i\varepsilon \varphi^{\varepsilon}(t, z))$ with

$$\sup_{\varepsilon, t\geq 0}\left\{\left\|A^{\varepsilon}\right\|_{H^{1}}+\frac{1}{\varepsilon}\left\|\frac{\partial_{z}\varphi^{\varepsilon}}{\mathfrak{c}_{s}}-A^{\varepsilon}\right\|_{L^{2}}\right\}<+\infty.$$

If A is the H^1 solution of KdV with $A_{|t=0} = A_0$, then, as $\varepsilon \to 0$,

$$\begin{cases} A^{\varepsilon} \to A & \text{ in } \mathcal{C}^{0}_{loc}(\mathbb{R}_{+}, H^{1^{-}}) \\ \partial_{z} \varphi^{\varepsilon} / \mathfrak{c}_{s} \to A & \text{ in } \mathcal{C}^{0}_{loc}(\mathbb{R}_{+}, L^{2}). \end{cases}$$

In the very well prepared case

$$\|\partial_z \varphi_0^{\varepsilon} - \mathfrak{c}_s A_0^{\varepsilon}\|_{L^2} = o(\varepsilon) \quad \text{and} \quad A_0^{\varepsilon} \to A_0 \quad \text{in} \quad H^1,$$

we have convergence up to H^1 :

$$A^{\varepsilon} \to A$$
 in $\mathcal{C}^0_{loc}(\mathbb{R}_+, H^1)$

and

$$\partial_z \varphi^{\varepsilon} - \mathfrak{c}_s A^{\varepsilon} = o(\varepsilon) \qquad \text{in} \quad \mathcal{C}^0_{loc}(\mathbb{R}_+, L^2).$$

Theorem 2 [C.-Rousset] ($d \ge 1$): For $s > 1 + \frac{d}{2}$, we suppose

 $\sup_{0<\varepsilon<1} \left\| \left(A_0^{\varepsilon}, \partial_{z_1} \varphi_0^{\varepsilon}, \varepsilon \nabla_{z_{\perp}} \varphi_0^{\varepsilon} \right) \right\|_{H^{s+1}} < +\infty \quad \text{and} \quad A_0^{\varepsilon} \to A_0 \quad \text{dans} \quad L^2$

as well as

$$\begin{cases} (d=1) \qquad \left\| \mathfrak{c}_{s} A_{0}^{\varepsilon} - \partial_{z_{1}} \varphi_{0}^{\varepsilon} \right\|_{L^{2}} \to 0 \\ \\ (d \ge 2) \qquad \left\| \mathfrak{c}_{s} A_{0}^{\varepsilon} - \partial_{z_{1}} \varphi_{0}^{\varepsilon} \right\|_{L^{2}} = \mathcal{O}(\varepsilon) \end{cases} \quad \text{as} \quad \varepsilon \to 0 \end{cases}$$

Then, for some T > 0, the solution Ψ of (NLS)s writes $\Psi(\tau, x) = (1 + \varepsilon^2 A^{\varepsilon}(t, z)) \exp(i\varepsilon \varphi^{\varepsilon}(t, z))$ for $0 \le t \le T$ with

$$\sup_{\varepsilon,\ 0\leq t\leq T}\left\{\left\|A^{\varepsilon}\right\|_{H^{s+1}}+\left\|\left(\partial_{z_{1}}\varphi^{\varepsilon},\varepsilon\nabla_{z_{\perp}}\varphi^{\varepsilon}\right)\right\|_{H^{s}}\right\}<+\infty.$$

If $A \in L^{\infty}([0, T], H^s)$ is the solution to (KdV)/(KP-I) with $A_{|t=0} = A$, then

$$\begin{cases} A^{\varepsilon} \to A & \text{in } \mathcal{C}([0,T], H^{s+1^{-}}) \\\\ \frac{\partial_{z_{1}} \varphi^{\varepsilon}}{\mathfrak{c}_{s}} \to A & \text{in } \mathcal{C}([0,T], H^{s^{-}}). \end{cases}$$

Convergence results towards (KdV)/(KP-I)

In the non well-prepared case

$$A_0^{\varepsilon} \to A_0 \qquad \partial_{z_1} \varphi^{\varepsilon} / \mathfrak{c}_s \to (u_0)_1 \qquad \text{and} \qquad \nabla_{z_\perp} \varphi^{\varepsilon} / \mathfrak{c}_s \to 0 \qquad \text{in} \quad L^2,$$

we show

$$\frac{1}{2} \left(A^{\varepsilon} + \partial_{z_1} \varphi^{\varepsilon} / \mathfrak{c}_s \right) \to A \quad \text{in} \quad L^2 \left([0, T], H^{s^-} \right)$$

and

$$A^{\varepsilon}, \partial_{z_1} \varphi^{\varepsilon} / \mathfrak{c}_s \rightharpoonup A$$
 weakly in $L^2([0,T] \times \mathbb{R}^d),$

where A is the solution to (KdV)/(KP-I) with $A_{|t=0} = \frac{1}{2} (A_0 + (u_0)_1)$.

Work of F. Béthuel - P. Gravejat - J-C. Saut - D. Smets:

 \rightarrow Convergence towards (KdV) for f(r) = r - 1 (integrable case) using the high order conservation laws.

Theorem [Béthuel-Gravejat-Saut-Smets]: We assume

$$\left\|A^{\varepsilon}\right\|_{H^{3}}+\left\|\partial_{z}\varphi^{\varepsilon}/\mathfrak{c}_{s}\right\|_{H^{3}}\leq M$$

and we consider the solution ζ^{ε} of (KdV) with

$$\zeta_{|t=0}^{\varepsilon} = A_0^{\varepsilon}.$$

Then, for $0 < \varepsilon < \varepsilon_0(M)$

$$\left\|A^{\varepsilon}-\zeta^{\varepsilon}\right\|_{L^{2}} \leq C_{M}\left(\left\|A_{0}^{\varepsilon}-\partial_{z}\varphi_{0}^{\varepsilon}/\mathfrak{c}_{s}\right\|_{H^{3}}+\varepsilon^{2}\right)\mathrm{e}^{C_{M}t}$$

Two quantities (formally) conserved by the Schrödinger flow

$$i\frac{\partial\Psi}{\partial\tau} + \Delta\Psi = \Psi f(|\Psi|^2) \qquad (NLS)$$

the energy (F' = f, $F(r_0^2) = 0$)

$$\mathcal{E} \equiv \frac{1}{2} \int_{\mathbb{R}^d} |\nabla \Psi|^2 + F(|\Psi|^2) \, dx$$

and the *momentun* (with $\Psi =
ho e^{i\phi}$)

$$\vec{\mathcal{P}} \equiv \frac{1}{2} \int_{\mathbb{R}^d} {}'' \rho^2 \nabla \phi'' \, dx = \frac{1}{2} \int_{\mathbb{R}^d} {}'' (\rho^2 - 1) \nabla \phi'' \, dx.$$

Travelling waves : $\Psi(\tau, x) = U(x_1 - c\tau, x_{\perp})$ solve $\Delta U = Uf(|U|^2) - ic\partial_{x_1}U.$ (E, P) diagram for the travelling waves in dimension d = 1, with f(r) = r - 1.

Transonic limit for the travelling waves

(E, P) diagram for the travelling waves in dimension d = 2, with f(r) = r - 1 (Jones-Roberts (1982)).

Transonic limit for the travelling waves

(E, P) diagram for the travelling waves in dimension d = 2, with f(r) = r - 1 (Jones-Roberts (1982)).

Theorem [Béthuel-Gravejat-Saut]: We assume d = 2 or d = 3 and f(r) = r - 1. There exist at least one minimizer of the energy under constraint of fixed momentum $\vec{\mathcal{P}}_1 = \mathfrak{p}$

- for any $\mathfrak{p} > 0$ if d = 2;
- for any $p \ge p_0 > 0$ if d = 3.

Theorem [Béthuel-Gravejat-Saut]: We assume d = 2 or d = 3 and f(r) = r - 1. There exist at least one minimizer of the energy under constraint of fixed momentum $\vec{\mathcal{P}}_1 = \mathfrak{p}$

- for any $\mathfrak{p} > 0$ if d = 2;
- for any $\mathfrak{p} \ge \mathfrak{p}_0 > 0$ if d = 3.

Theorem [Mariş]: We assume $d \ge 3$ and f'(1) > 0. Then, for every $0 < c < \mathfrak{c}_s$, there exists at least one nontrivial travelling wave for (NLS) with speed c.

Theorem [Béthuel-Gravejat-Saut]: We assume d = 2 or d = 3 and f(r) = r - 1. There exist at least one minimizer of the energy under constraint of fixed momentum $\vec{\mathcal{P}}_1 = \mathfrak{p}$

- for any $\mathfrak{p} > 0$ if d = 2;
- for any $\mathfrak{p} \ge \mathfrak{p}_0 > 0$ if d = 3.

Theorem [Mariş]: We assume $d \ge 3$ and f'(1) > 0. Then, for every $0 < c < \mathfrak{c}_s$, there exists at least one nontrivial travelling wave for (NLS) with speed c.

Theorem [C.-Mariş]: We assume d = 2, f'(1) > 0 and $\Gamma \neq 0$. Then, there exists a set $C \subset (0, \mathfrak{c}_s)$ of speeds such that for any $c \in C$, there exists at least one nontrivial travelling wave for (NLS) with speed c. Moreover, $\sup C = \mathfrak{c}_s$ and $\inf C = 0$. Ansatz $U(x) = (1 + \varepsilon^2 A^{\varepsilon}(z)) \exp(i\varepsilon \varphi^{\varepsilon}(z))$ with

$$z_1 = \varepsilon x_1, \qquad z_\perp = \varepsilon^2 x_\perp, \qquad c = c(\varepsilon) = \sqrt{\mathfrak{c}_s^2 - \varepsilon^2}.$$

We expect $A^{\varepsilon} \simeq \partial_{z_1} \varphi^{\varepsilon} / \mathfrak{c}_s \to \mathcal{W}$ solitary wave of (KdV)/(KP-I):

$$\frac{1}{\mathfrak{c}_s^2}\,\partial_{z_1}\mathcal{W}+\Gamma\mathcal{W}\partial_{z_1}\mathcal{W}-\frac{1}{\mathfrak{c}_s^2}\,\partial_{z_1}^3\mathcal{W}+\Delta_{z_\perp}\partial_{z_1}^{-1}\mathcal{W}=0.$$

Works of de Bouard-Saut: if $\Gamma \neq 0$, existence of ground states with speed $1/\mathfrak{c}_s^2$ only for d = 2 and d = 3.

If d = 1, "the" (KdV) soliton (KdV) is

$$w(z) \equiv -\frac{6}{\mathfrak{c}_s^2 \Gamma \mathrm{ch}^2(z/2)},$$

Theorem [C.-Mariş]: We assume $\Gamma \neq 0$, d = 1, 2 or 3 and f'(1) > 0. There exists a sequence (U_n, c_n) , where U_n is a non trivial travelling wave with speed c_n and $c_n = \sqrt{\mathfrak{c}_s^2 - \mathfrak{c}_n^2} \to \mathfrak{c}_s$ such that

$$U_n(x) = (1 + \varepsilon_n^2 A_n(z)) \exp(i\varepsilon_n \varphi_n(z))$$
 $z_1 = \varepsilon_n x_1, \qquad z_\perp = \varepsilon_n^2 x_\perp.$

Moreover, there exists a ground state \mathcal{W} of (KdV)/(KP-I) such that

$$A_n \to \mathcal{W}$$
 and $\partial_{z_1} \varphi_n / \mathfrak{c}_s \to \mathcal{W}$

in all the $W^{s,p}$, $s \in \mathbb{N}$, 1 . Finally,

$$E(U_n) \sim \mathfrak{c}_s P(U_n) \sim K \varepsilon_n^{5-2d}.$$

Theorem [C.-Mariş]: We assume $\Gamma \neq 0$, d = 1, 2 or 3 and f'(1) > 0. There exists a sequence (U_n, c_n) , where U_n is a non trivial travelling wave with speed c_n and $c_n = \sqrt{\mathfrak{c}_s^2 - \mathfrak{c}_n^2} \to \mathfrak{c}_s$ such that

$$U_n(x) = (1 + \varepsilon_n^2 A_n(z)) \exp(i\varepsilon_n \varphi_n(z))$$
 $z_1 = \varepsilon_n x_1, \qquad z_\perp = \varepsilon_n^2 x_\perp.$

Moreover, there exists a ground state \mathcal{W} of (KdV)/(KP-I) such that

$$A_n \to \mathcal{W}$$
 and $\partial_{z_1} \varphi_n / \mathfrak{c}_s \to \mathcal{W}$

in all the $W^{s,p}$, $s \in \mathbb{N}$, 1 . Finally,

$$E(U_n) \sim \mathfrak{c}_s P(U_n) \sim K \varepsilon_n^{5-2d}.$$

 \diamond If d = 1, it is a branch of travelling waves for c near \mathfrak{c}_s .

Generalize similar result of Béthuel-Gravejat-Saut for d = 2 and f(r) = r - 1.

Difficulties :

- minimisation under constraint is impossible :

* *F* can take negative values (cubic-quintic nonlinearity); * in dim d = 3, the travelling waves are not minimizers under constraint.

- d = 3: high energy/momentum.
- do the solution vanish ? $\Rightarrow c \simeq \mathfrak{c}_s$ and $E(u) c \vec{\mathcal{P}}_1(u)$ small is sufficient.
- getting the L^p bounds in dim d = 3 much longer (Sobolev...).

Principe : expand to next order the nonlinearity and enlarge A^{ε} and φ^{ε} .

 \Rightarrow we shall obtain a *cubic* (KdV)/(KP-I) equation :

$$rac{1}{\mathfrak{c}_s^2}\,\partial_{z_1}\mathcal{W} - rac{1}{\mathfrak{c}_s^2}\,\partial_{z_1}^3\mathcal{W} + \Gamma'\mathcal{W}^2\partial_{z_1}\mathcal{W} + \Delta_{z_\perp}\partial_{z_1}^{-1}\mathcal{W} = 0,$$

where the coefficient Γ^\prime is given by

$$\Gamma' \equiv \frac{1}{\mathfrak{c}_s^2} \left(6f''(1) + 4f'''(1) \right) - 15 = \frac{4f'''(1)}{\mathfrak{c}_s^2} - 24$$

(recall $2f''(1) = -3\mathfrak{c}_s^2$ since $\Gamma = 0$).

 \Rightarrow similar result for planar ferromagnets (Spathis-Papanicolaou).

We plug the ansatz ($c(\varepsilon) = \sqrt{\mathfrak{c}_s^2 - \varepsilon^2}$)

$$U(x) = r_0 (1 + \varepsilon A_{\varepsilon}(z)) \exp(i\varphi_{\varepsilon}(z)) \qquad z_1 \equiv \varepsilon x_1, \quad z_{\perp} \equiv \varepsilon^2 x_{\perp}$$

$$egin{aligned} & egin{aligned} -c(arepsilon)\partial_{z_1}A_arepsilon+2arepsilon\partial_{z_1}A_arepsilon+2arepsilon^3
abla_{z_1}\varphi_arepsilon+2arepsilon\partial_{z_1}\varphi_arepsilon+arepsilon^2+arepsilon^3|
abla_{z_1}\varphi_arepsilon+arepsilon(\partial_{z_1}\varphi_arepsilon)^2+arepsilon^3|
abla_{z_\perp}\varphi_arepsilon|^2+rac{1}{arepsilon}f\Big(r_0^2(1+arepsilon A_arepsilon)^2\Big)\ & -arepsilon^2rac{\partial^2_{z_1}A_arepsilon+arepsilon^2\Delta_{z_\perp}\varphi_arepsilon|^2+arepsilon^3|
abla_{z_\perp}\varphi_arepsilon|^2+arepsilon^3|
abla_{z_\perp}\varphi_arepsilon|^2+arepsilon|^2+arepsilon^3|
abla_{z_\perp}\varphi_arepsilon|^2+are$$

To leading order :

$$\partial_{z_1} \varphi_{\varepsilon} \simeq \mathfrak{c}_s A_{\varepsilon}.$$

To second order :

$$\partial_{z_1} \varphi_{\varepsilon} - c(\varepsilon) A_{\varepsilon} = -\frac{3\varepsilon}{2} \mathfrak{c}_s A_{\varepsilon}^2 + o(\varepsilon).$$

To leading order :

$$\partial_{z_1} \varphi_{\varepsilon} \simeq \mathfrak{c}_s A_{\varepsilon}.$$

To second order

$$\partial_{z_1} \varphi_{\varepsilon} - c(\varepsilon) A_{\varepsilon} = -\frac{3\varepsilon}{2} \mathfrak{c}_s A_{\varepsilon}^2 + o(\varepsilon).$$

Combining $(1)c(\varepsilon)/\mathfrak{c}_s^2 + \partial_{z_1}(2)/\mathfrak{c}_s^2$ and dividing by ε^2 :

$$\begin{split} \frac{1}{\mathfrak{c}_{s}^{2}} \,\partial_{z_{1}}A_{\varepsilon} &- \frac{1}{\mathfrak{c}_{s}^{2}} \,\partial_{z_{1}} \Big(\frac{\partial_{z_{1}}^{2}A_{\varepsilon} + \varepsilon^{2}\Delta_{z_{\perp}}A_{\varepsilon}}{1 + \varepsilon A_{\varepsilon}} \Big) + \frac{c(\varepsilon)}{\mathfrak{c}_{s}^{2}} (1 + \varepsilon^{2}A_{\varepsilon})\Delta_{z_{\perp}}\varphi_{\varepsilon} \\ &+ \frac{1}{\varepsilon} \Big\{ 2\frac{c(\varepsilon)}{\mathfrak{c}_{s}^{2}} \partial_{z_{1}}\varphi_{\varepsilon}\partial_{z_{1}}A_{\varepsilon} + \frac{c(\varepsilon)}{\mathfrak{c}_{s}^{2}} A_{\varepsilon}\partial_{z_{1}}^{2}\varphi_{\varepsilon} + \frac{1}{\mathfrak{c}_{s}^{2}} \partial_{z_{1}}[(\partial_{z_{1}}\varphi_{\varepsilon})^{2}] - 5A_{\varepsilon}\partial_{z_{1}}A_{\varepsilon} \Big\} \\ &+ \frac{1}{\mathfrak{c}_{s}^{2}} \left(6f''(1) + 4f'''(1) \right) A_{\varepsilon}^{2}\partial_{z_{1}}A_{\varepsilon} = \mathcal{O}(\varepsilon). \end{split}$$

$$\implies \qquad \frac{1}{\mathfrak{c}_s^2}\,\partial_{z_1}A + \Gamma'A^2\partial_{z_1}A - \frac{1}{\mathfrak{c}_s^2}\partial_{z_1}^3A + \Delta_{z_\perp}\partial_{z_1}^{-1}A = 0$$

Existence of travelling waves ?

$$\implies \frac{1}{\mathfrak{c}_s^2} \partial_{z_1} A + \Gamma' A^2 \partial_{z_1} A - \frac{1}{\mathfrak{c}_s^2} \partial_{z_1}^3 A + \Delta_{z_\perp} \partial_{z_1}^{-1} A = 0$$

Existence of travelling waves ?

Basic remarks :

- if A is a solution, so is -A !
- for $\Gamma' > 0$: defocusing equation / for $\Gamma' < 0$: focusing equation.

$$\implies \frac{1}{\mathfrak{c}_s^2} \partial_{z_1} A + \Gamma' A^2 \partial_{z_1} A - \frac{1}{\mathfrak{c}_s^2} \partial_{z_1}^3 A + \Delta_{z_\perp} \partial_{z_1}^{-1} A = 0$$

Existence of travelling waves ?

Basic remarks :

- if A is a solution, so is -A !

- for $\Gamma' > 0$: defocusing equation / for $\Gamma' < 0$: focusing equation.

When d = 1, $\Gamma' < 0$, "the" (KdV') soliton is

$$\mathbf{w}^{\pm}(z) \equiv \pm \frac{\sqrt{-6/(\Gamma'\mathfrak{c}_s^2)}}{\mathrm{ch}(z)}.$$

Works of de Bouard-Saut: for $\Gamma' < 0$, existence of ground states (with speed $1/(2\mathfrak{c}_s^2)$) only for d = 2.

Théorème [C.-Mariş]: We assume f'(1) > 0, $\Gamma = 0 > \Gamma'$ and d = 1. There exists $0 < \mathfrak{c}_0 < \mathfrak{c}_s$ s.t. for every $\mathfrak{c}_0 < c = c(\varepsilon) < \mathfrak{c}_s$, there exists exactly two travelling waves U_{ε}^{\pm} with speed $c(\varepsilon)$. Moreover,

$$U_{\varepsilon}^{\pm}(x) = (1 + \varepsilon A_{\varepsilon}^{\pm}(z)) \exp(i\varphi_{\varepsilon}^{\pm}(z)), \qquad z = \varepsilon x,$$

with

$$A_{\varepsilon}^{\pm} \to \mathrm{w}^{\pm}$$
 and $\partial_z \varphi_{\varepsilon}^{\pm} / \mathfrak{c}_s \to \mathrm{w}^{\pm}$

in all the $W^{s,p}$, $s \in \mathbb{N}$, 1 .

Ex1:
$$f(r) = r - 1 - \frac{3}{2}(r-1)^2 + \frac{3}{2}(r-1)^3$$
 $(\Gamma = 0, \Gamma' = -6)$

Ex1:
$$f(r) = r - 1 - \frac{3}{2}(r - 1)^2 + \frac{3}{2}(r - 1)^3$$
 $(\Gamma = 0, \Gamma' = -6)$

Ex2:
$$f(r) = 4(r-1) + 36(r-1)^3$$
 ($\Gamma = 6$)

Ex2:
$$f(r) = 4(r-1) + 36(r-1)^3$$
 $(\Gamma = 6)$

Ex3:
$$f(r) = \frac{1}{2}(r-1) - \frac{3}{4}(r-1)^2 + 2(r-1)^3$$
 $(\Gamma = 0, \Gamma' = 24 > 0)$

Ex4:
$$f(r) = (r-1) - \frac{3}{2}(r-1)^2 + 2(r-1)^3 - \frac{5}{2}(r-1)^4 + 3(r-1)^5 - \frac{7}{2}(r-1)^6 + 4(r-1)^7 \qquad (\Gamma > 0)$$

Ex5:
$$f(r) = (r-1) + 3(r-1)^2$$
 ($\Gamma = 24 > 0$)

Ex5:
$$f(r) = (r-1) + 3(r-1)^2$$
 ($\Gamma = 24 > 0$)

What about dimension d = 2 when $\Gamma = 0$?

With the previous ansatz,

$$E(u_{\varepsilon})\simeq \mathfrak{c}_{s}P(u_{\varepsilon})\simeq \varepsilon^{-1}\gg 1.$$

- \rightarrow Does there exist rarefaction waves with high energy ?
- \rightarrow Does there exist solutions with small energy (and momentum) ?

What about dimension d = 2 when $\Gamma = 0$?

With the previous ansatz,

$$E(u_{\varepsilon})\simeq \mathfrak{c}_{s}P(u_{\varepsilon})\simeq \varepsilon^{-1}\gg 1.$$

 \rightarrow Does there exist rarefaction waves with high energy ?

 \rightarrow Does there exist solutions with small energy (and momentum) ?

Works in progress:

- numerical simulation in d = 2.
- error bounds for the (KdV)/(KP-I) asymptotic regime.
- justification of the time dependent cubic (KP-I) equation.

